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We have developed a substrate-free surface plasmon polariton laser to address the challenges associated with confining electromagnetic fields for integrated optoelectronic circuits at
the nanoscale. Traditional plasmonic structures, such as nanoshell-based lasers, demonstrate potential for the detection of subcellular structures; however, they suffer from high
plasmon dephasing rates and elevated thresholds, which significantly hinder their integration potential. An alternative approach involves a propagating surface plasmon laser based on a
layered semiconductor-insulator-metal configuration, which facilitates electrical excitation but necessitates a bulky supporting substrate, thereby limiting its applicability in bio-related
contexts. Our substrate-free design, featuring direct contact between the film and air, markedly reduces the laser threshold while maintaining performance across various surfaces. This
innovation presents a promising pathway towards the realization of miniaturized, bio-integrated optoelectronic devices.

Substrate-free structure and simulation
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FIG. 1. Structures and characteristics of substrate-free SPP nanolaser: (a) Substrate-free
SPP nanolaser structure, with a ZnO nanowire placed on a thin film. (b) The magnitude of
|E(x, y)| for the theoretical minimum substrate-free SPP structure at a wavelength of 373
nm, illustrating the confinement of the electric field within the Al,O; layer

Fabrication of substrate-free SPP laser
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FIG. 2. Wet transfer process of substrate-free ZnO surface plasmon nanolaser. The
schematic illustrates the thin film suspended on the PCB and the cross section of the
substrate-free ZnO nanolaser.

Material analysis
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FIG. 3. Surface quality of the substrate-free ZnO SPP laser. (a) AFM image of a 50-nm thick
Al film grown on a sapphire substrate in a 3 x3 pm? (b) SEM image of Al thin film. (c) TEM
image of the Al thin film cross section. (d) Top view SEM image of the ZnO nanowire laid on
the Al film.

Optical properties of substrate-free nanolaser
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FIG. 4. Lasing characteristics
of substrate-free ZnO SPP
nanolaser. (a) and (b)
Spectrum of an 830-nm long
ZnO nanowire on an Al film,
pumped and suspended post
transfer to a Si substrate. The
threshold values for (a) and (b)
were ~1.38 and 2.56 kW/cm2,
respectively. (c) and (d)
Corresponding L-L  curves
(black spheres) and linewidths
of dominant peaks (red
spheres) of (a) and (b). The
extracted spontaneous
coupling factors (B) of (c) and
(d) were 4 x 102 and 1 x 1073,
respectively.
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Conclusion

In conclusion, we have developed a substrate-free surface plasmon
polariton laser with a reduced threshold and compact mode volume.
This design enhances field confinement and demonstrates high-
temperature operability, making it suitable for integration into practical
optical circuits. The transferability of the nanolaser facilitates various
applications, including biosensing, ultra-fine laser displays, and
nanophotonics, thereby presenting significant potential for
advancements in optical communications and on-chip interconnects.
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