

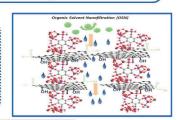
# 2024「中技社科技獎學金」 2024 CTCI Foundation Science and Technology Scholarship

## 境外生研究獎學金

Research Scholarship for International Graduate Students



### Advanced MMR Center

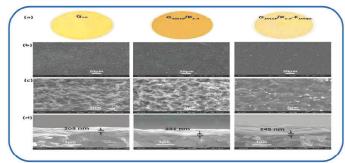



High performance lamellar structured graphene oxide nanocomposite membranes via Fe<sub>3</sub>O<sub>4</sub>-coordinated phytic acid control of interlayer spacing for organic solvent nanofiltration (OSN)

Student Name: Shalligito Habetamu Abebe (GPA=4.12); Advisor: Professor Wei-Song Hung. Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology

# Introduction

- There is a lot of research being done on GO lamellar 2D membranes for separating organic solvents and solutes., [1]
- However, existing challenges include inadequate solvent permeability and limited dye rejection capacity due to swelling of membranes, [2]
- In this study, we proposed a novel technique that employs low-pressure assisted filtration to fabricate nanocomposite membranes using GO and PhA/Fe<sub>3</sub>O<sub>4</sub>
- Remarkably, these composite membranes exhibited outstanding separation performance for PM (≥99.88 %) in water




**Experimental Section** 



Figure 1. Nanocomposite membranes fabrication process

#### Morphological characterization



#### **OSN Separation Performance**

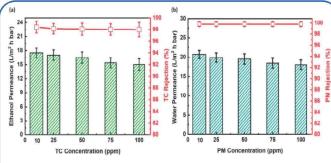
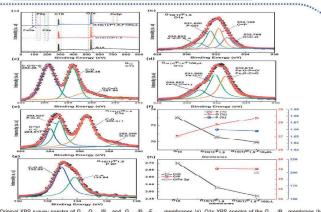




Fig. 3. Ethanol permeance and TC rejection (a) and water permeance and PM rejection (b)

#### **XPS** Characterization



 $G_{10(1)}/P_{1.5}$  and  $G_{10(1)}/P_{1.5}$ - $F_{100|0L}$  membranes (a), O1s XPS spectra of the c), O1s XPS spectra of the  $G_{10(1)}/P_{1.5}$ - $F_{100|0L}$  nanocomposite membrane (d), I composition of C (%), O (%), and P (%) (f); P2p (g), and C/O, C/P and C/F

#### Conclusion

- In summary, we have fabricated novel GO-PhA/Fe<sub>3</sub>O<sub>4</sub> nanocomposite membranes using a pressure assisted filtration method In this study, the varied d-spacing of GO-PhA/Fe<sub>3</sub>O<sub>4</sub> nanocomposite membranes was achieved by
- intercalation of PhA/Fe<sub>3</sub>O<sub>4</sub> between GO layers

  The resulting nanocomposite membranes showed balanced organic solvent permeance and solute
- \*The optimum G<sub>10(1)</sub>/P<sub>1,5</sub>-F<sub>100µL</sub> nanocomposite membrane showed long-term stability in harsh environments due to its high mechanical strength and chemical stability

#### Some selected publications

- Abebe, S.H., et al. 2024. High performance lamellar structured graphene oxide nanocomposite membranes via Fe3O4-coordinated phytic acid control of interlayer spacing for organic solvent nanofiltration (OSN). Chemical Engineering Journal, 495, p.153451.
   Abebe, S.H., et al., 2024. Lamellar structured GO-Melamine nanocomposite membranes with varying d-spacing for efficient organic solvent nanofiltration (OSN). Journal of Membrane Science, 699, p.122043.
- Subrahmanya, T.M., Chi, Y.J., Nayak, S., Abebe, S.H., Hung, W.S., Kadja, G.T., Hu, C.C., Lee, K.R. and Lai, J.Y., 2024. Sulfonated graphene oxide linked with alkali metal ions membranes for proton conductivity in hydrogen production from water electrolysis. Journal of Membrane Science, 705, p.122903.

#### Acknowledgement







