2024「中技社科技獎學金」 2024 CTCI Foundation Science and Technology Scholarship ## 境外生研究獎學金 Research Scholarship for International Graduate Students ### Exploring Structural and Optical Traits of WS2 Films Synthesized through Sulfurization of W and WO3 Pangihutan Gultom¹, Jiang-Yan Chiang ¹, Jung-Chuan Lee¹, and Jung-Chung-Andrew Huang^{1,2,3} ¹4th year Ph,D student of Department of physics, National Cheng Kung University, Tainan 701, Taiwan. ²Department of applied physics, National University of Kaohsiung, Kaohsiung 811, Taiwan. ³Taiwan consortium of emergent crystalline materials, Ministry of science and technology, Taipei 10601, Taiwan #### Introduction Tungsten disulfide (WS₂) has garnered significant attention due to its unique layer-dependent properties, including its ability to absorb 5–10% of incident sunlight and its distinctive band structure. These characteristics make WS₂ a promising candidate for applications in solar cells, hydrogen evolution reactions, and transistors. However, the efficiency of most WS₂-based devices remains relatively low. In this study, WS₂ was synthesized using ion beam sputtering and sulfurization from tungsten metal (W) and tungsten trioxide (WO₂) across various layer configurations, including monolayer, bilayer, six-layer, and nine-layer structures. To enhance crystallinity, the nine-layer WS₂ was further prepared from tungsten metal and sulfurized in a furnace at different temperatures (800°C, 85°C, 900°C, and 950°C). X-ray diffraction (XRD) analysis revealed that WS₂ exhibited a 2H crystal structure, with crystallinity improving at higher sulfurization temperatures. Moreover, WS₂ prepared from WO₃ (denoted as WS₂- Schematic diagram: a). W-metal and WO_3 prepared on sapphire substrate by ion beam sputtering technique; b). W-metal or WO_3 sulfurization process using a thermocouple-equipped furnace, Structure Analysis High resolution XPS of WS2 films: (a). S 2P, (b). W 4f and W 5f signals XANES Study XRD of nine-layer WS₂ sulfurized from W and WO₃ at 900 °C. It shows narrower FWHMs of 002, 004, and 008 signals from WS₂-WO₃ 420 418 40 2θ (°) 50 60 of the transmittance of the WS_2 thin film with different thicknesses. (b) Band diagram of monolayer WS_2 from the absorption. 350 400 Raman shift (cm⁻¹) The morphology of the WS- Number of Layers 350 400 Raman shift (cm⁻¹) Raman spectra deconvoluted by Lorentzian fittings of at; WS₂-W (Bottom) and WS₂-WO₃ (Upper). The Raman shift of A_{Ig} for WS₂-WO₃ (Upper) and WS₂-W (Bottom). The peaks position of A_{Ig}, E¹_{2g}, and 2LA(M) with respect to the layer number of WS₂-WO₃ (Upper) and WS₂-W (Bottom). #### Conclusions We report a study of nanoscale WS₂ films prepared by the sulfurization from W and WO₃. The WS₂ films were inferred to be 2H phase and c-axis oriented. The crystal quality of the WS₂ films improved with increasing sulfurization temperature up to 950 °C. X-ray diffraction and Raman spectroscopy show that the FWHM of WS₂-WO₃ is narrower than that of WS₂-W, indicating that the structure of WS₂-WO₃ is superior to that of WS₂-W. The photoluminescence of monolayer WS₂ is strongly enhanced and centered at 1.98 eV. The transmittance of monolayer WS₂ exceeds 80 % and the bandgap is 1.9 eV revealed by ultraviolet-visible-infrared spectroscopy. We conclude that a large-area, high-quality WS₂ film can be prepared by the sulfurization processes of WO₃. The results are promising for applications in next-generation optoelectronic devices.