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Exploring Structural and Optical Traits of WS: Films Synthesized through Sulfurization of W and WO,

Pangihutan Gultom!, Jiang-Yan Chiang !, Jung-Chuan Lee!, and Jung-Chung-Andrew Huang!2?
-4 year Ph.D student of Department of physics, National Cheng Kung University, Tainan 701, Taiwan.

2Department of applied physics, National University of Kaohsiung, Kaohsiung 811, Taiwan.

3 Taiwan consortium of emergent crysitalline materials, Ministry of science and technology, Taipei 10601, Taiwan

[ Introduction

]

Tungsten disulfide (WS:) has garnered significant attention due o |ts umque I d
distinctive band structure. These characteristics make WSz a for

approximately 1.9 eV.

, bilayer, six-layer, and nine-I;

its ability to absorb 5-10% of incident sunlight and its

i m sc]ar cells, hydrogen evolution reactions, and transistors. However, the
efficiency of most WS-based devices remains relauvely low In thls study, WS2 was synthesized using ion beam sputtering and sulfurization from tungsten metal (W) and
tungsten trioxide (WOs) across various layer ini

infrared

. To enhance cr
was further prepared from tungsten metal and sulfurized in a furnace at ditferenl temperatures (800°C, 850°C, 900°C, and 950°C). X-ray diffraction (XRD) analysis
revealed that WS: exhibited a 2H crystal structure, with crystallinity improving at higher sulfurization temperatures. Moreover, WS: prepared from WOs (denoted as WSz~
WO;) demonstrated superior crystallinity compared to that synthesized from tungsten metal (WS.-W). Raman spectroscopy results showed that the full-width at half
maximum (FWHM) of WS2-WOs was narrower than that of WS.-W, indicating better crystal quality. Furthermore, we demonstrated that high-quality monocrystalline WS:
thin films could be fabricated at a wafer scale through sulfurization of WOs. The photoluminescence (PL) of the WS2 monolayer was strongly enhanced, with a peak
centered at 1.98 eV. The WS: monolayer also exhibited a transmittance exceeding 80%, and ultraviolet-visibl

the nine-layer WS

d its bandgap to be

Schematic diagram: a). W-metal and WO, prepared on sapphire substrate by ion beam sputtering
technique; b). W-metal or WO sulfurization process using a thermocouple-equipped furnace,
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[ Elemental Study ]

[ Micro-PL spectroscopy
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(a) Comparison of the transmittance of the WS, thin film with different thicknesses. (b)
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The XANES confirmed the structure of WS, to

Morphology Analysis

[ Structure Analysis J
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XRD of nine-layer WS, sulfurized from W and WO, at 900 °C. It shows

Raman shift (cm™)

Raman spectra deconvoluted by Lorentzian fittings of at; WS,-W (Bottom) and WS,-WO; (Upper). The Raman shift of 4 e for WS,-WO; (Upper) and WS,-W (Bottom). The peaks position of A 1 E: %a’ and 2LA(M) with respect to the layer number of WS,.
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Band diagram of monolayer WS, from the absorption. be 2-Hexagonal The morphology of the WS, narrower FWHMs of 002, 004, and 008 signals from WS,-WO;
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We report a study of nanoscale WS, films prepared by the sulfurization from W and WO;. The WS, films were inferred to be 2H phase and c-axis oriented. The crystal quality of the WS, films i

°C. X-ray diffraction and Raman spectroscopy show that the FWHM of WS,-WO; is narrower than that of WS,-W, mdlcalmg that the struclure of WS,-WO, is superior to that of WS,-W. The photoluminescence of monolayer WS, is strongly enhanced and
centered at 1.98 eV. The transmittance of monolayer WS, exceeds 80 % and the bandgap is 1.9 €V revealed by ul
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WO,. The results are promising for applications in next-generation optoelectronic devices.

y. We Tude that a large-area, high-quality WS, film can be prepared by the sulfurization processes of

P! d with i sulfurization

up to 950
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