

2024「中技社科技獎學金」 2024 CTCI Foundation Science and Technology Scholarship

境外生研究獎學金

Research Scholarship for International Graduate Students

Metal-oxide Semiconductor Based Low Powered Humidity and Gas Sensors at **Room Temperature**

5th Year PhD Student: Moumita Deb, Advisor: Hsiao-Wen Zan

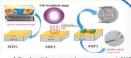
International PhD Program in Photonics, Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University

- Developed low-power SnO_2 , Au/SnO_2 , and TiO_2/SnO_2 -based sensors for relative humidity (RH), H_2S , and NOx detection, respectively, all operating efficiently at room temperature. These sensors exhibit exceptional performance, achieving high resolution for RH changes as small as 0.1% and detecting ultra-low gas concentrations, such as 2 ppb (parts-per billion) H_2S and 4 ppb NOx, which are highly challenging benchmarks.
- Furthermore, they are capable of detecting various respiratory and oral diseases, including asthma, pneumonia, and halitosis, by analyzing specific biomarkers in human breath.

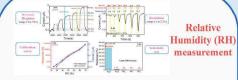
SnO₂-based relative humidity/respiratory monitoring sensor

Importance of humidity/respiratory monitoring

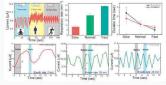
14-22 min-1



Sleeping apnea Pneumonia, Asthma Fast $> 30 \text{ min}^{-1}$ Slow <6 min-1 nhalation Fxhalation Appreic periods Prolonged Exha



Portable breath analysis system


Results and discussions

- ♦ The sensor can detect RH 15 to 70% with resolution as low as 0.1% RH at room
- temperature.

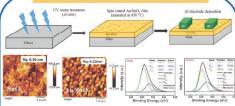
 Sensor shows highly selectivity towards water molecules.

Respiratory monitoring

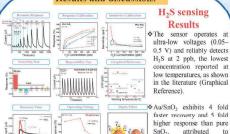
The sensor detects slow, normal, and fast breathing, with a normal rate of 18-22 breaths/min, matching commercial breath analyzers.

Flower petal like nanostructure Au/SnO2based H2S gas sensor

Importance of H2S gas monitoring



. Healthy individuals exhale oral breath with H-S levels below 50 ppb, while s with oral diseases like halitosis, periodontitis, or oral squamous cell carcinoma emit over 100 ppb of H₂S.


Device structure and Characterization

AFM data reveals that flower-petal-like Au/SnO₂ nanostructures enhance surface area and roughness compared to pure SnO₂. XPS analysis shows higher oxyger vacancies in Au/SnO₂ (37.49%) versus pure SnO₂ (26.49%), contributing to improved gas responsivity

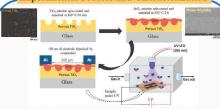
The standard gas sensing system was used for H2S gas measurement.

Results and discussions

H₂S sensing Mechanism

The Au/SnO₂ sensor provides more oxygen vacancy sites than pure SnO₂. enhancing adsorbed oxygen (O2-) sites and boosting H2S gas respon

Nanoporous TiO₂/SnO₂-based NO and NO, gas sensor


Importance of NOx gas monitoring

Breath Diseases

<15 ppb for healthy individuals, >20 ppb for COPD patients, and >40 ppb

Experimental Process and Characterization

♣ A porous TiO₂/SnO₂ structure was prepared via a simple sol-gel process, with TiO₂ as a photocatalyst and SnO₂ as the NOx sensing material. The SEM images serve as evidence of the unique porous structure of the TiO₂/SnO₂.
 ♣ UV LED (365 nm) light was integrated to enhance gas sensing through

photocatalytic activation.

Results and discussions

NOx sensing Results The sensor operates at low voltage (1 V) and able to detect low concentration

gas such as 4 ppb NO and 10 ppb NO₂ at room temperature

♦ The sensor achieve improved recovery time and extended lifetime under ultra low UV power (3 μW/cm²), which can be harvested from indoor sunlight.

1,23M Mechanism under UV 00,00 NO (ads) + O_{γ} (ads) + $\varepsilon^- \rightarrow NO_{\gamma}$ (ads) + O^- (ads), $2NO_{\gamma}$ (gas) + O_{γ} (ads) + $\varepsilon^- \rightarrow 2NO_{\gamma}$

TiO₂, with 3.3 eV band gap (365 nm), exhibits photocatalytic effect on the TiO₂/SnO₂ sensor. It helps the reactivity of adsorbed oxygen sites.

- A SnO₂-based relative humidity/respiratory sensor was developed using a low annealing temperature (<50°C), achieving high-resolution detection of RH changes as small as 0.1%, a challenging feat according to the literature. The flexible sensor also effectively monitors human respiratory rates and modes, making it suitable for detecting respiratory diseases and environmental changes.

 The nanostructured Au/SnO₂-based H₂ Sensor detects ultra-low concentrations (2-500 ppb) with a high response of 280% at 500 ppb H₂S under low operating power (0.5 V). This sensor is ideal for detecting oral gases related to diseases such as halitosis, periodontitis, and oral cancer.

 The UV-activated porous TiO₂/SnO₂ sensor utilizes a photocatalytic effect under low UV power (3 W/cm²), significantly improving recovery time, recovery ratio, and lifespan while detecting ultra-low NOx levels (4 to 1000 ppb) at room temperature. This makes it suitable for diagnosing breath-related diseases like asthma.

 All sensors are designed for low-power operation, englising earlon emissions and remoting systemable, development.

localized dipole effects.

- M. Deb, C.J. Lu* and H.W. Zan*, "Achieving Room-Temperature ppb-Level H₂S Detection in a Au/SnO₂ Sensor with Low Volta Enhancement Effect", ACS Nemsors, 2024, 9(9):4305-4973.

 M. Deb, M. Y. Chen, P.Y. Chang, P.H. Li, M.J. Chan, Y.C. Tian, P.H. Yeh, O. Soppera*, H.W. Zan*, "SnO₂-based ultra-flexible humidity/respiratory sensor for analysis of human breath", Biosensors, 2023, 13(1):81.

 Y.C. Chiu, M. Deb, P.T. Lin*, H.W. Zan*, Y.R. Shib, Y. Koo, D.B. Ruan, K.J. Gan, C.C. Hsu, "Sputtered ultrathin WO, for realizing root temperature high-sensitive NO; gas sensors", ACS Applied Electronic Materials, 2023, 5(11):5831-40.

 M. Deb, Y. Ghossoul, L. Noce, P.H. Li, H.Y. Tsio, O. Soppera*, and W. Zan*, "High Efficient UV Activated Tio/SnO₃ Surface Nano-Matto Gas Sensor: Enhancing Stability for ppb-Level NOx Detection at Room Temperature", ACS Applied Materials & Interfaces, (Under review).

