

2024「中技社科技獎學金」 2024 CTCI Foundation Science and Technology Scholarship

境外华研究獎學金

Research Scholarship for International Graduate Students

Wafer-scale Growth of Molybdenum Disulfide Films for High-performance Electronics Devices

Ming-Jin Liu, Yu-Lun Chueh *

Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC

Corresponding Author: ylchueh@mx.nthu.edu.tw

Abstract

The wafer-scale growth and transfer of molybdenum disulfide (MoS₂) are critical for advancing next-generation electronics and optoelectronics. We develop a method to grow 2-in. waferscale MoS₂ films by chemical vapor deposition (CVD). The asgrown MoS, film exhibits high uniformity and a clean surface. Such 2-in. MoS₂ films can be transferred onto SiO₂ substrates via a wet-transfer method. Field-effect transistors (FETs) fabricated from the transferred MoS₂ demonstrate excellent performance, achieving an on/off current ratio of 106. Furthermore, monolithic 3D (M3D) inverters were demonstrated by vertically integrating a CVD-synthesized monolayer WSe2 ptype FET atop monolayer MoS₂ n-type FET arrays (2.5 × 2.5 cm²), using semiconductor industry techniques, including transfer, ebeam evaporation, and plasma etching. The resulting devices exhibit an on/off current ratio exceeding 106 and an average voltage gain of ~9 at V_{DD} = 2 V. The integrated M3D inverter also achieves ultra-low power consumption of 0.112 nW at V_{DD} = 1 V. Statistical analysis confirms the high reliability of these devices, demonstrating their suitability for large-area applications. This work highlights the immense potential of 2D TMD-based M3D inverters for future integrated circuits.

Experiments

♦ Wafer-scale Growth of MoS₂ Films

☐ Schematic diagram of the multisource CVD setup

◆ Wafer-scale Transfer of MoS₂ Films

☐ Schematic processes of transferring MoS₂ films

◆ Monolithic 3D Integrated Complementary Inverters Based on Monolayer n-MoS2 and p-WSe2

☐ Schematic processes of M3D integrated inverter

Results and Discussions

♦ Wafer-scale MoS₂ Films

☐ Photograph of as-grown MoS, film

☐ Raman and PL spectrum of as-grown MoS₂ film

☐ AFM images of as-grown MoS₂ film (100% coverage of the wafer)

Wafer-scale MoS, FETs

OM images of as-grown MoS, film

S/D deposition

/ield > 99% 10-8 10-5 10-1 10-1 W_{ch}=40 μm 10-1 10 Gate voltage (V)

Transfer curve of as-

☐ OM and photography of MoS₂ FET array fabricated MoS₂ FET array

♦ Monolithic 3D Integrated Complementary Inverters

☐ Structural schematics of M3D inverter

☐ Transfer curve and voltage transfer of M3D inverter

V. (V)

Conclusions

- ♦ The 2-in. wafer-scale MoS₂ film, grown by CVD method, shows high uniformity and a clean surface.
- ♦ The as-grown MoS₂ films can be transferred with high fidelity.
- ◆ The fabricated MoS₂ FET arrays show high performance with a on/off
- ♦ The integrated M3D inverter based on as-grown MoS₂ film shows an average voltage gain of \sim 9 at V_{DD} = 2 V and an ultra-low power consumption of 0.112 nW at a V_{DD} of 1 V.

