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Human action recognition (HAR) is an evolving technology with the potential to
revolutionize how we understand human behavior, which finds applications across various
domains such as elderly care, surveillance systems, and human-robot interaction. As HAR
continues to advance, there's a growing interest in integrating it into Internet of Things
(IoT) systems. To minimize response time between clients and servers, researchers have
explored embedding models into edge devices, though achieving optimal results remains a
challenge. Balancing model size and performance is particularly problematic; while
reducing parameters can limit model complexity, larger models often yield superior
performance, posing challenges for implementation on memory-constrained edge devices.
In this paper, we introduce a novel lightweight framework specifically designed to address
these challenges. Through experimentation on a renowned benchmark dataset, our
proposed approach demonstrates both superior performance and minimal model size.

2. Methodology

The focus on this article
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Fig. 1. Flowchart of human action recognition on edge devices.

Figure 1 illustrates the comprehensive operational process of skeleton-based online
action recognition for edge devices within an lIoT system. Video data captured by sensor
cameras is processed through a pre-trained model (e.g., the MoveNet model) to extract
human poses (skeleton coordinates). These coordinates are then sent to edge devices,
where a lightweight model is stored and processes the data to generate final results. Finally,
the results are sent to clients via messaging or email notifications.

2.1. Data augmentation techniques

To ensure the highest accuracy across all datasets, we implemented a data augmentation
technique for 2D skeletons. This technique comprises two distinct methods, as depicted in
Figures 2b and 2c. First, we apply a random global jitter to shift the skeleton’s overall
position (Figure 2c¢), affecting the entire input representation. This method enables the
network to learn that action recognition is not overly dependent on the global position of
joint trajectories, preserving the intrinsic relationships among different joints. In the second
method, the skeleton is divided into four groups, as shown in Figure 2b. Each group
undergoes the same amount of random jitter, focusing on adjusting each group’s location
independently. While the first method shifts the entire skeleton, the second method
modifies the location of each group independently.
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Fig. 2. a) Illustration of the skeleton shape from the JHMDB dataset. b) Depiction of the first data
augmentation method for global position augmentation. ¢) Representation of the second data augmentation
method for local position augmentation.
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TABLE |
Comparison of accuracy and parameters between our proposed method and SOTA methods
utilizing only 2D skeleton Where (M) Denotes Million

2019 1.22M 65.5%
: 1.45M 74.7%
1.82M 77.2%

1.34M 77.9%

1.88M 79.3%

1.97M 81.3%

0.25M 83.2%

4. Conclusion

This paper introduces a novel lightweight framework specifically designed for
deployment on tiny devices (i.e., Raspberry Pi 5, STM32MP157D-DK1.) within [oT
systems, addressing memory limitations. We aim to extract comprehensive spatial-temporal
information through skeleton while minimizing the impact of noise, light, and dynamic
backgrounds typically present in RGB frames. Remarkably, our approach achieves
maximum accuracy and minimal model size, particularly noteworthy when applied to
challenging datasets.
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