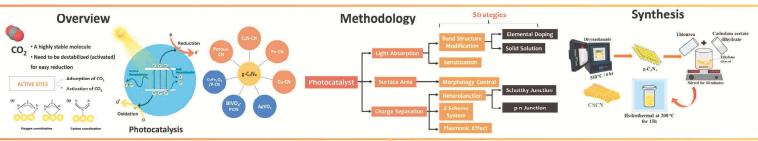


# 2024「中技社科技獎學金」 2024 CTCI Foundation Science and Technology Scholarship

## 境外生生活助學金

**Living Grant for International Graduate Students** 




A Comparative Study to Enhance the Photocatalytic Activity of 2D g-C<sub>2</sub>N<sub>A</sub> for Pollutant Remediation and CO, Reduction: Doping versus Heterojunction

### **ABSTRACT**

Pollutant degradation and CO2 reduction are pressing challenges for environmental sustainability. Photocatalysis provides a green solution by leveraging solar energy to degrade pollutants and convert CO2 into valuable products.



Graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) stands out for its visible light activity and cost-effectiveness but suffers from low light absorption and charge recombination. Strategies like doping and forming heterojunctions (e.g., CdS-CN, Cu-CN, BiVO<sub>4</sub>/P-CN) can significantly enhance its photocatalytic efficiency.





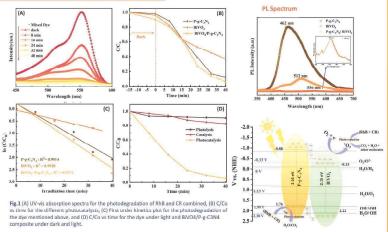



Fig.2 Schematic illustration of the formation of BiVO<sub>a</sub>/P-g-C<sub>3</sub>N<sub>a</sub> heterojunction for the photodegradation of RhB and CR dye under visible-light irradiation

- Provided insights into underlying mechanisms of enhanced performance.
- Optimal degradation rate for Congo Red and RhB (6.66 × 10<sup>-2</sup> min<sup>-1</sup>), pristine BiVO<sub>4</sub>  $(2.39 \times 10^{-2} \text{ min}^{-1})$  by 2.78 times, P-g-C<sub>3</sub>N<sub>4</sub>  $(5.61 \times 10^{-2} \text{ min}^{-1})$  by 1.18 times.
- Developed CSCN heterostructure photocatalyst with a 2x CO production rate (130.9  $\mu$ mol/g) compared to pristine materials (with trace amounts of CH<sub>4</sub> and C<sub>2</sub>H<sub>6</sub>).
- po-CN has more efficient charge separation and transfer rate with CO<sub>2</sub> reduction ability of 3.5x higher than pure CN, Ph-CN, and 2x higher than Cu-CN.

#### Selected Publications

- Chowdhury, A., Yang, T. C. K., & Lee, L. W. C. (2024). Synergistic Enhancement of CO<sub>2</sub> photoreduction through sulfur defects in (3D/2D) CdS-nanoflowers/CN Binary heterojunction photocatalyst under visible light. *Journal of Environmental Management*, 365, 121602. Chowdhury, A., Balu, S., Lan, K. W., Wei-Chih Lee, L., & Yang, T. C. K. (2023). Synergistic Effect of BiVO<sub>4</sub>/Pg-C<sub>3</sub>N<sub>4</sub> Heterojunction with Enhanced Optoelectronic Properties on Synthetic Colorante under Visible Light. *Colorante*, 2(2), 426-442. Chowdhury, A., Balu, S., Venkatesvaran, H., Chen, S. W., & Yang, T. C. K. (2022). Facile construction of CuFe<sub>2</sub>O<sub>4</sub>/pg-C<sub>3</sub>N<sub>4</sub> p-n heterojunction with boosted photocatalytic activity and sustainability for organic degradation reactions under visible-light. *Surfaces and Interfaces*, 34, 102329.

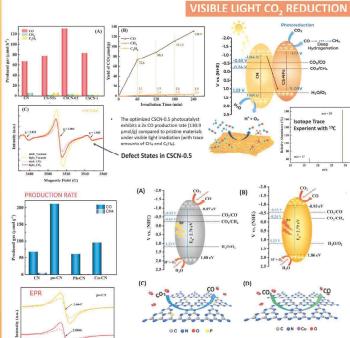







Fig.3 Schematic representation of photocatalytic reaction mechanism for (A) CN, (B) po-CN, (C) Ph-CN, and (D) Cu-CN



